您的位置:寻梦网首页其它文库科普知识天体运行论>第九章 表现为月球离开第一本轮高拱
天体运行论

作者: 哥白尼

第九章 表现为月球离开第一本轮高拱


点的非均匀运动的剩余变化

 

 

4—9

上述论证还可使我们了解,月球在其第一本轮上如何不均匀地运动,最大不等量出现在月亮为新月或凸月以及半月时。又一次令AB为由第二木轮中心的平均运动所描出的第一本轮。令第一本轮的中心为C,其高拱点为A,而低拱点为B。在圆周上取任意点E,并连结CE。令CE:EF=1097:237。以E为心,EF为半径,作第二本轮。在两边画与它相切的直线CL与CM。令小本轮由A向E运动,即是在第一本轮的上半部向西移动。令月球从F向L,也是朝西面动。AE运动是均匀的,第二本轮通过FL的运动显然使均匀运动增加了弧段FL(60),而当它通过MF时从它减去这一段。在三角形CEL中,L为直角。在CE=1097时,EL=237单位(61)。以CE=10,000为单位,则EL=2160。因ECL与ECM两三角形相似并相等,EL所对的角ECL按表=12°28′(62)=角MCF。这是月球偏离第一本轮高拱点的最大差。这出现在月球平行度偏离地球平行度线两边各38°46′的时候。因此,当月亮与太阳的平距离为38°46′并且月亮是在平冲任一边同样距离处时,十分明显会发生这些最大的行差。




其它文库首页