|
复杂性中的思维 作者: 克劳斯·迈因策尔 7、关于未来、科学和伦理学的结语 复杂系统原理主张,物理的、社会的和精神的世界都是非线性的、复杂的。这个基 本的认识论结论对于我们现在的行为和未来的行为,都有重要的影响。科学和技术对于 未来的发展有着至关重要的影响。因此,本书最后将展望一个复杂的和非线性世界中的 未来、科学和伦理学。我们对于其未来能够知道什么?我们应当干些什么? 7.1复杂性、预测和未来 在古代,预测未来的能力似乎是预言家、祭司和占星术士的某种神秘能力。例如, 特尔斐神谕中,占卜家皮蒂娅(公元前6世纪)在迷糊状态之中揭示了帝王和英雄的命 运。在现代,人们变得相信拉普拉斯妖的无限能力:对于无摩擦的不可逆的线性保守世 界,预测将是完满的。要预测一个过程的未来,我们只需要知道其精确的起始条件和运 动方程,通过求解其未来时刻的方程就可以办到。科学哲学家们也早已致力于分析自然 科学和社会科学中进行预测的逻辑条件。关于人的预测能力的信念,在本世纪中由于几 方面的科学发展而动摇了。量子理论教导我们,一般地说,我们只能作出概率性预测 (参见2.3节)。一大类现象是由确定论混沌支配的:尽管它们的运动服从牛顿物理学 定律,它们的轨迹却是敏感地依赖于其起始条件的,因而排除了长期预测。在耗散系统 中,如同贝纳德实验的流体层(图2.20),有序的出现不可能预测,因为这有赖于微 观上的起始小涨落。诸如蝴蝶翅膀扇动那样的随机事件,原则上是可能影响全球的天气 动力学的。在第6章中,我们已经知道,经济、商业和社会中的模式和关系常常会剧烈 变化。在自然科学之外,人们的行动——这是社会科学中要观察的——能够而且正在影 响着未来的事件。因此,预测可以变成自我满足或自欺欺人的预言,它自己在改变着已 经建立的模式或过去的关系。预测是否也就只不过是盯住水晶球看呢? 但是,几乎我们的所有决策都联系着未来的事件,需要预测关于未来环境的情景。 这对于个人的决策的确如此,例如何时与何人结婚、何时和如何投资储蓄;对于影响着 整个组织、公司、社会或全球状态的复杂决策也是如此。近些年来,改进经济和生态、 管理和政治中的预测和决策已经得到越来越多的强调。经济震荡、生态突变、政治灾难 以及诸如新市场的机会、新技术的趋势和新的社会结构,都不应该再是杂乱无章的,不 应该是上帝送来的致命事件。人们希望做好准备,因此开始发展起来种种定量的预测方 法,它们针对着如商业和管理中的不同的情形。从方法论的观点看,所有的定量预测工 具都标志着特定的预测水平,这限制了它的可靠应用。让我们对一些预测工具的长处和 短处进行一些考察吧。 最通行的定量预测方法是时间序列程序。它们假定,在数据系列中的某种模式是可 以在时间上再现的,可以外推到未来。因此,一个时间序列程序,对于预测环境因素如 就业水平或超级市场每周的销售情况——在此个体的决策没有多大的影响——可能是合 适的。但是,时间序列是不可能对数据模式背后的原因作出解释的。在历史上,巴比伦 天文学家就运用着这种方法,他们把月亮东升的数据模式外推到末来,而没有任何基于 行星运动模型的解释。在18世纪,物理学家对于太阳黑子的原因知之甚少。但是在太阳 黑子的观察中,发现了一种频率和数量的模式,因而通过时间序列的连续来进行预测就 成为可能。在商业和经济中,数据序列中隐含着多种模式。某种水平的模式可能在数据 中并没有得到体现(例如稳定销售的产品)。某种季节性模式的出现,是按照某种季节 因素引起的一系列的涨落,如有些产品的销售依赖于天气。某种循环模式可能不会以恒 定的时间间隔再现自身,如金属的价格或国民总产量。某种趋势模式,出现在变量值随 时间出现某种一般性增减时。在数据序列中有某种隐含模式时,此模式必须要通过将过 去的数值平均化和平权化(“平滑化”)而与杂乱无章区分开来。数学上,线性的平滑 化方法可以有效地运用于这样的数据:它们展示了某种趋势模式。但是,平滑化方法并 不试图去证明基本隐含模式的个体组分。趋势、循环和季节性因素还可以有子模式,它 们必须从分析数据序列的总模式中分离出来、分解开来。 在时间序列程序中,某种过去的数据模式被简单地外推到未来,而一个解释性模型 则假定了在(“因”)变量y(这是我们希望预测的)和另一个(“自”)变量x之间的 关系。例如,因变量y是每单位生产的费用,而决定着生产费用的自变量X是单位产品的 数目。在此情形下我们可以在x和y的2维坐标系中建立关系模型,画出一条直线,它在 某种意义上将给出这种关系的最好的线性近似。回归分析运用此种最小面积方法,去减 少实际观察值y和相应的线性近似直线上的点y之间的距离。显然,在许多情形下这种方 法并非一种有效的方式。一个例子是月销售量的预测,它按照一年的季节发生非线性变 化。此外,所有的经理都知道,销售量并不只受时间的影响,还受到多种多样因素的影 响,如国民总产量、价格、竞争对象、生产代价、税收等等。两个因素的线性相互作用, 仅仅是经济中的一种简化,就像经典物理学的线性保守世界中的两体问题一样。 但是,一个更精确的复杂模型当然是需要更多的努力、更多的经验和更多的计算时 间的。在许多决策的情形下,解释或预测一定的因变量要用到一个以上的变量。举一个 普通的例子,销售经理希望预测下一年公司的总销售量,并对影响这种销售量的因素有 更好的理解。因为他有一个以上的自变量,他的分析就成了多元回归分析。然而,他希 望预测的因变量是表达为自变量的线性函数的。回归方程中的计算基于过去的观察样本 的运用。结果是,基于此种回归方程的预测的可靠性,就主要取决于所使用的特定的样 本。因此,可靠程度必定由统计显著性检测来度量。与多元回归涉及到一个方程不同, 经济计量学模型可能包含多个联立回归方程。在线性方程中,求解的数学方法是基于线 性代数和线性优化方法的(例如,单纯形方法)。尽管它们是线性的,经济计量模型可 能是非常复杂的,有多个变量,只能用计算机程序和机器来把握。经济学中非线性编程 的求解策略常常是将复杂的问题分解成子问题,使之可以近似地作为线性问题来处理。 运用这些方法时的一个隐含的假设是,与现有历史数据吻合得最好的模型将也是能 超出这些数据作出未来预测的最好模型。但是,对于大量的真实世界的情形,这种假设 并不见得有效。而且,在经济学和商业中使用的绝大多数数据,忽略了测量误差,也难 以进行试验控制。因此,有必要理解,当已建立起来的过去模式发生变化时,种种预测 方法是如何成功的。预测在标志着每一方法的不同预测水平上是不同的。显然,不存在 唯一的方法,它可以很好地预测所有的序列和预测水平。有时,过去的数据完全不能显 示未来的变化。因此,如果没有内部知识,要预测一个模式的变化是不可能的。模式转 移或“范式变化”是商人和经理的日常经验,而非库恩等人的传统中某些科学哲学家们 的超常见解。 有没有可以决定数据序列中的模式或关系何时发生变化的定量程序?这种方法的确 存在着,其中运用追踪信号来显示预测误差中的变化,以表明何时发生了非杂乱的转移。 在质量控制流程中,例如,对于小汽车的生产序列,对设备的输出要进行周期取样。只 要样本的均值落在控制限度以内,设备的运行就被认为是正常的。当情况不是这样时, 就停止生产并采取适当的措施,以使其重新正常运行。一般说来,定量预测方法的自动 监测遵循着这种质量控制流程概念。任何时间进行的预测,其误差(即实际值减去预测 值)都与控制限度的上限和下限进行对照。如果它落在可接受的范围中,外推的模式就 没有变化。如果预测的误差落在控制误差之外,已建立的模式中就很可能发生了某种系 统的变化。当涉及到大量的预测时,通过追踪信号进行自动监测可能是合适的。但是在 只有一个序列或几个序列时,人们就只能伺机而动,去发现此商业数据的趋势中是否发 生了变化。 预测技术和市场、新产品或服务的赢利的未来趋势以及与相应的就业和失业相联系 的趋势,是管理者和政治家面临的最困难但也是最紧迫的任务之一。他们决策依赖于大 量的技术、经济、竞争、社会和政治的因素。自从20世纪50年代出现了商业计算机以来, 人们燃起了这样的希望,即通过计算速度的加快和数据存储的增加把握这些复杂的问题。 的确,任何定量的预测方法都可以编程放进计算机中去运行。因为没有任何一种方法可 以适用于所有的情形,于是发展起来以计算机为基础的多预测系统,从而为管理者提供 一组选择方法的清单。一个例子是预测系统SIBYL,其名称来源于古代的预言家西比尔。 相传西比尔曾把著名的《西比尔占语集》出售给罗马大帝塔克文(高傲的)。 的确,SIBYL是一个基于知识的系统(参见5.2节)的计算机化预测方法包。它提 供的程序包括进行数据准备和数据处理,从屏幕上选用可利用的预测方法,所选方法的 运用,对预测方法的比较、选取和组合。屏幕预测技术选择中,基于知识系统的推理组 件提示了这样的方法:它们以大范围预测运用和决策规则样本为基础,是最接近于匹配 特定的环境及其特点的。SIBYL的最终功能是,检验和比较其中的哪一种提供了最好的 结果。使用者和系统的界面,要尽可能地友好和有效率,以适用于预测专家,也适合于 新手。然而,我们决不要忘记,SIBYL只可能优化所存贮的预测方法。原则上,预测方 法的预测水平,不可能由使用计算机而得到放大。与人的专家具有学习能力相反,如 SIBYL这样的预测系统仍然是程序控制的,具有基于知识系统的典型局限性。 一般说来,基于计算机的预测自动机是遵循线性思维路线的。另一方面,现代计算 机的能力不断增加,鼓舞着研究人员去分析非线性问题。在20世纪50年代中叶,气象学 家偏向于使用基于线性回归概念的统计预测方法。这种发展,得到了诺什·维纳对于稳 恒随机过程的成功预测的支持。爱德华·洛仑兹对这种统计预测思想产生了怀疑,并决 定对比非线性动力学模型从实验上来检测其有效性(参见2.4节)。天气和气候是一个 有能量耗散的开放系统的例子。为这种系统建立的模型中,用相空间的点表示其状态, 用轨迹来表示其行为。经过一定时间后,轨迹就达到了某个吸引集(“吸引子”),这 可以是此系统的某个稳定的点(图2.14a或图3.11c)、某个周期振荡,叫做极限环 (图3.11b)或奇怪吸引子(图2.21)。如果人们希望预见包含某个稳定点或极限环 的系统的行为,人们可以观察到附近的轨迹会发散,不会生长,甚至会消失(图7.2)。 在这种情形下,整体的起始条件将达到定态,相应的系统也就是可预测的。一个例子是, 用非线性的洛特卡-沃尔特拉方程建模的生态系统,捕食和被捕食群体具有周期轨迹。 附近轨迹的发散和收敛,可以用所谓的李亚普诺夫指数进行数值度量: 我们考虑时刻t=0起始条件为x(0)和x’(0)的两条邻近的轨迹x(t)和x’ (t),矢量d(t)的长度d(t)=[x’(t)-x(t)]。如果轨迹收敛,那么d(t) ≈eΛt且Λ<0。量Λ叫做李亚普诺夫指数,定义为 Λ(x(0),d(0))= [(1/t)ln(d(t)(0))] 如果其值为正,李亚普诺夫指数就给出了收敛速率。在图7.2中模型过程x’(t) 对真实过程x(t)提供了可靠的预测,因为假定此系统具有依赖于其起始条件的收敛轨 迹。 一个非线性系统的相图,可以具有若干吸引子,分别是不同轨迹趋向的区域(“分 区”)(参见图2.10)。对于预测演化系统的未来,知道了所有的吸引子及其起始条 件x(0)还是不够的。如果系统的初始状态正好是远离一定吸引盆的,那么相应的吸引 子终态是不可预测的。 在图2.22a-c中,非线性的逻辑斯蒂映射描述了随控制参量的不断增加发生的从有 序向混沌的转移。图2.23a,b描述了相应的超过一定临界值而出现的混沌区的分叉序列。 如果相应的李亚普诺夫指数为正,那么系统的行为是混沌的。如果它为零,那么系统倾 向于分叉。如果它为负,那么系统就处于稳定态或分叉树上的一支。在这种情形中,系 统是可预测的。在其他情形中,对起始条件的敏感性就开始出现。显著之处在于,在混 沌区的非线性系统决非意味着完全不可预测。在混沌未来的灰色区中的白条或“窗口” (图2.23b),显示了具有负的李亚普诺夫指数的局域有序状态。因此,在混沌的海洋 中,我们可以找到可预测的有序岛。在这种情形下,至少对于短的特征时间间隔系统是 可预测的。 一般来说,可预测程度的度量使用的是开始观察后的特定时刻的观察过程和模型之 间的统计相关。接近一致的值相应于满意的预测,而小的值表明了观察和预测之间存在 差距。所有预测模型都有一定的可预测行为的时间,超过了以后可预测性会减少,以不 同速度趋向零。对于模型的改进可能使预测行为的时间有某种程度的扩展。但是,可预 测的范围依赖于涨落参量。局域不稳定混沌系统中弱的微观扰动可以在短时间中达到宏 观规模。因此,局域的不稳定性惊人地减少着对预测行为的改进。预测系统的预测水平, 既不可能通过改进测量仪器也不可能通过精致预测模型来改进。当我们记起洛仑兹的大 气模型,使用的是具有局域的和全局稳定性的非线性系统,我们就会意识到气象学家在 获取有效的长期或甚至中期预测中遇到的困难。通过不断增加的计算机的能力,天气预 报就会直线地进步,这是20世纪50年代的一种幻想。 随着非线性的模型运用于不同的研究领域,我们获得了对于振荡化学反应,物种、 群体的涨落,流体湍流和经济过程的一般性洞察。例如,太阳黑子的形成,以前用时间 序列的统计方法进行分析,它决非是一种杂乱的活动。它可以用非线性混沌系统来建模, 具有几种特征的周期和奇怪吸引子,对其活动的预测是有限的。例如,在公共舆论形成 的非线性模型中,我们可以区分出选举(“分叉”)前的可预测的稳定态与向稳定多数 的转变,选举前两种可能的意见都没有受到偏爱,而不可预测的微小涨落却可能在很短 的分叉间隔中引起突然的转变。这种情形使我们想起在沸腾水中气泡的形成:当一个气 泡变得充分大时,它以其向上的方式稳定地生长是可预测的。但是,它的出现和初期的 生长却是一种随机涨落问题。显然,非线性建模解释了现代民意测验中毕希娅们和西彼 尔们的困难。 今天,非线性预测模型并不总能够提供比标准线性程序更好的、更有效的预测。它 们的主要优点在于,对真实过程中的实际的非线性动力学的解释,对局域的短期预测水 平的证实和改进。但是,为了通过求解方程而预测未来的行为,首先要构造起支配了时 间t的观测的适当动力学方程。甚至在自然科学中,对于如地震那样的复杂领域的适当 的方程是否能够推导出来也还不清楚。我们可以希望在计算机的存贮中放入一张典型的 非线性方程的表,在观察过程中系数可以自动地得到调节。与对所有可能的相关参量进 行穷竭式搜索的做法相反,学习式策略可以从粗略的模型出发,只经过一段相对短的时 间的运行,就可以说明相对窄的值域中的少量参量。通过神经网络的学习策略,已经实 现了对于短期预测的改进。以学习数据为基础,神经网络通过自组织程序可以权衡输入 数据,并减少对短期股票行情的预测误差(图5.22a,b)。若只有一部分股票市场的 顾问使用这种技术支持,他们会做得很好。但是如果股票市场上的所有代理人都使用同 样的学习策略,那么预测就将成为某种自欺欺人的预言。 原因在于,人类社会不是分子或蚂蚁的复杂系统,而是具有高度意向性行动的存在 物,具有或多或少的自由意志。一个特殊的自我实现的预言是俄狄浦斯效应。在此人们 如同那个传说中的古希腊国王一样徒劳地试图改变他们的被预测的命运。从宏观的观点 看,我们当然可以观察到一个个的个体以其自己的活动,对于代表看文化、政治和经济 秩序(“序参量”)的社会的集体宏观态有贡献。然而,社会的宏观态当然并非只是对 其所有部分的平均。它的序参量,以定向(“役使”)其活动、激发或抑制其态度和能 力,强烈地影响着社会中的个体。这种反馈在复杂动力系统中是典型的。如果由于内部 或外部的相互作用,环境条件的控制参量达到了某种临界值,宏观变量就可能运动到某 种不稳定区域,在此高度发散的多种可能途径成为可能。微小的不可预测的微观涨落 (例如为数很少的有影响人物、科学发现、新的技术),就可能决定了社会将在分叉处 不稳定态的发散途径中取得何种途径。 7.2复杂性、科学和技术 尽管存在上述困难,我们仍然需要对于局部和全球的短期。中期和长期预测的可靠 支持。从政治角度上看,一个最新要求是为科学和技术的未来发展建立模型,因为科学 和技术已经成为现代文明中的一个关键性因素。实际上,这种发展似乎是在受科学思想 和研究群体的复杂动力学支配,科学思想和科学群体是嵌在复杂的人类社会之网中的。 研究群体的共同主题,长时期或短时期地吸引着研究人员的兴趣和能力。这些研究的 “吸引子”,表现为支配科学家的活动,如同流体动力学中的吸引子和涡旋。当研究状 态变得不稳定时,研究群体可能分解成追求特殊研究途径的小群体,它们可能会以获得 答案而告结束,或可能再度分叉,如此等等。科学的动力学表现为由其复杂性不断增加 的分叉树中的相变来实现。有时,科学问题得到了明确定义,并导致清楚的解答。但是, 也有“奇怪的”和“扩散的”状态,如同混沌理论中的奇怪吸引子。 历史上,对科学成长的定量探索始于统计方式,如雷诺夫关于“18世纪和19世纪的 西欧物理学发展中创造性的波型涨落”(1929)的工作。罗伯特·默顿从社会学观点讨 论了“科学和技术中兴趣中心的变化”,皮特里姆·索罗金分析了15世纪以来科学发现 和技术发明的指数增长。他强调,发明或发现的重要性并不取决于主观的判断,而是取 决于由基本创新引起的相继科学工作的数量。早在1912年,阿弗雷得·洛特卡已经设想, 借助于微分方程来描述诸如疟疾和化学振荡的传播的真正流通过程。在一篇1926年的文 章中(《科学产量的频率分布》),他运用了关于科学思想传播的流行模型。首先是有 一个“感染思想”中心,它以流行型波的形式感染了越来越多的人。因此,从认识论的 观点看,科学领域的积累和集中就使用所谓的洛特卡分布和布拉特福特分布来建模,此 模型开始于某些个体作者的若干篇文章,它们成为出版物群的核心。流行模型还应用于 技术创新的传播。在所有这些例子中,我们发现了众所周知的逻辑映射的S曲线(图2. 22a),即开始较慢,随后是指数增长,最后又是慢增长到饱和。显然,学习过程也是 用S曲线的3阶段来描述的,即个体最初的成功学习较慢,然后是迅速的指数的增长,最 后又是缓慢的趋近于饱和的阶段。 从统计分析转向动力学模型具有重大的方法论优点,即难以理解的现象如科学活动 中的奇怪涨落或统计相关,都可以在计算机辅助的模拟实验中获得动态变化的图景。流 行模型和洛特卡-沃尔特拉方程只是模拟科学共同体的耦合生长过程的最初尝试。不过, 进化过程的基本性质如创造出新的结构要素(突变、创新等等),还没有得到反映。社 会系统中的进化过程的描述,必须要包括不稳定的相变,新思想、新研究领域和新技术 (如经济模型中的新产品)藉此取代掉已有东西,从而改变了科学系统的结构。在对艾 根的前生物进化方程(参见3.3节)的推广中,科学系统的描述使用了一组可分清其数 目的领域(即科学研究领域的子领域),其中每一领域都以一些占据的元素为标志(即 科学家在特定的子领域中的工作)。自复制、衰退、交换和从外部来源的输入或自发发 生等基本过程,都必须要建立模型。每一自复制或死亡过程,都仅仅改变某一个领域的 占据状况。对于简单的无交换的线性自复制过程,一个领域的选择价值由该领域的“诞 生”率和“死亡”率之差给出。当一个新的领域开始被占据,正是其选择价值决定了此 系统对于此创新是否稳定。如果其选择价值大于任何此领域中的其他任何选择价值,新 领域的生长就将超过其他领域,系统可能会变得不稳定。具有较高选择价值的新领域的 进化,标志了一种简单的选择过程,它遵循达尔文的“适者生存”。 但是我们决不要忘记,这种数学模型并不意味着把科学活动还原为生物机制。进化 方程的变量和常数并不涉及生物化学量及其测量,而是科学计量学的统计表。自复制对 应于新的科学家加入到他所希望从事的研究领域之中。他们的选择受到教育过程、社会 需求、个体兴趣、科学学派等等的影响。衰退意味着,科学家只在科学领域中活动有限 的年头,科学家可能会因种种原因(例如年龄)而离开科学系统。领域迁移意味着科学 家在科学领域的交换过程,它遵循迁移模型。科学家也许会偏爱具有较大吸引力的领域, 此种领域表现为具有较大的自复制率。当过程包括了领域之间的交换,这些领域具有自 复制和衰退的非线性生长函数,那么一个创新的选择价值的计算就是相当复杂的数学任 务。一般来说,一个具有较高选择价值的新领域,是由系统对于相应扰动的稳定性来标 志的。 实际上,科学的生长是一个随机的过程。例如,仅仅有几个先驱者投身到新领域的 初始阶段,就是典型的随机涨落。科学子领域中可能占据密度的随机动力学,用主方程 来建模,它使用由自复制、衰退和领域迁移的转移几率定义的转移算符。此随机模型, 为科学生长过程的几种计算机辅助模拟提供了基础。相应的确定论曲线,作为对于大量 一致的随机系统的平均结果,也被看作是趋势分析。结果,子领域的科学共同体的一般 S形状曲线的生长规律,即具有缓慢的起始阶段、迅速生长阶段和炮和阶段,也在一些 模拟中得到了证实。在一系列的模拟中(图7.3),假定了一个研究领域大约有 120-160个成员。对于5个领域,选取了100个科学家作为起始条件,此起始条件紧接饱 和领域。第6个领域还没有建立起来(其起始条件中成员为零)。在第一个例子中,已 经对若干种情形,模拟了自复制过程对新领域生长曲线的影响。随着自复制率的增加, 新领域以邻近领域为代价,增长得更加迅速。 新领域的形成可能会有更加共存或更加选择的趋势。起始阶段的生长可能会或多或 少快一些,或者也可能被延缓。科学史上一个生长被延缓的著名例子是混沌理论本身, 它在起始阶段只受到非常少的科学家的注意(例如彭加勒)。尽管新领域的数学原理是 相当清楚的,但是其指数增长是前些年当计算技术可以处理非线性方程时才刚刚开始。 有时,一个形成中的领域不可能成长为一个真正的科学领域,因为它与众多的环境领域 相比仅仅具有弱的选择优势。遗憾的是,有些技术领域如能源的替换(例如风能、太阳 能),就仍然处于这种可怜状态,它们被强大的传统的或核的能源工业所包围。如果一 个新的有吸引力的领域出现了,就可以看到科学家从周围领域争相进来的现象。这些人 们正在适应新领域的风格和问题求解模式。这种直接的领域迁移,有时导致了科学中的 时髦现象。 众所周知,如果适当控制参量的增加使之超过一定的临界值,S形状的非线性逻辑 映射就会产生出种种复杂动力学行为,如不动点、振荡、确定论混沌(图2.22)。显 然,随机论模型和确定论模型都反映了科学生长的某些典型性质。这些效应是新领域的 结构分化、缺省、创造、扩展,伴随着缓慢、消失、迅速生长、过度时髦和消退。对这 些动力学效应的计算机辅助作图模拟中,可以用适当的序参量来标志,序参量能以科学 计算数据为基础进行检验。在种种条件下的可能图景可以进行模拟,从而去预测未来发 展的里程碑和领域。 但是迄今为止,对科学研究领域进化的建模,仅仅考虑了所选择的领域中科学人力 的变化。科学生长的更合适的表示,必须要考虑到科学努力中的问题求解过程。但是, 要找到一个合适的态空间来表示科学领域中问题求解的发展,是一个困难的方法论问题。 在生物进化的数学理论中,物种只能用高维生物特征空间的点来表示(图3.4)。一种 物种的演化相应于一个点通过表现型特征空间的移动。类似地,在科学系统中,也必须 建立起科学问题的高维特征空间。科学文章的构型以引证数量中的多维尺度技术进行分 析,用二维或三维空间的点来表示。研究问题常常用关键词(“宏观术语”)的序列来 表示,关键词根据它们在科学叙述中出现或共同出现的频率来选取。 在连续的进化模型中,问题空间的每一点都用相应于所研究问题的矢量来描述(图 7.4a)。问题空间由科学领域的所有科学问题构成,其中一些可能是未知的和还没有 进入研究之中的。这种空间是距离空间,因为两点之间的距离相应于所表示的问题之间 的主题关联程度。时刻t工作于问题q的科学家自身在问题空间的分布密度为x(q,t)。 在此连续模型中,x(q,t)dq指的是在时刻t工作于“问题元”dq的科学家人数(图7. 4b)。 因此,此研究领域可能相应于问题空间中种种关联点的密度云。在这些较大密度区 域之间的单个点,相应于科学家工作于独立的研究问题,它们可能代表了可能的新研究 领域的核心。科学史表明,一组研究问题成长为一个研究领域可能要花上数十年之久。 在此连续模型中,领域的迁移过程以密度变化来反映:如果一位科学家从问题q变化到 问题q’,则密度x(q,t)将变小,x(q’,t)将增加。科学家在问题空间的运动, 用一定的生产-输运方程来建模。函数a(q)表示,在领域q中科学家通过自复制和衰退 而生长的人数变化率。因此,它是一个在问题空间具有多个极大值和极小值的函数,表 示了科学领域中的吸引力的增加或减小。类似于物理势能(例如图4.10),人们可以 把a(q)解释为具有山地和低谷的吸引力势能地形,代表着研究领域的吸引子和停滞区 (图7.4b)。 知识生长的动力学模型已成为科学计量学上可检验的。因此,它们可能在科学哲学 及其科学生长概念、科学史及其科学文献评价之间架起桥梁。在认知计量学中,最近进 行了一种尝试,对研究问题进行量化,并在由图书计量学的、认知的和社会的特征所构 成的适当问题空间中,将它们表示出来。由波普尔、库恩等人提出的简化的科学史模式, 就可能用可检验的假说来代替。库恩的具有“常规”科学阶段和“革命”科学阶段的不 连续的序列,显然难以解决知识的生长问题。另一方面,某些历史学家的朴素信念,即 认为科学的生长是永恒真理的不断增长,无论如何也是不适合于复杂研究动力学的。甚 至波普尔的精致了的后期哲学,认为科学并非通过不可归约的已有定律的单极增长,而 是通过假说和批判的学习策略而增长,也需要更精确和更明晰的历史地变化着的方法论、 体制和组织的标准。现代计算机的计算能力不断增加,使我们能够在社会科学中进行新 的模拟试验的定量探索。动力学模型的巨大优势在于,通过计算机辅助以图形方式显示 出改变参数的多种形象。这些形象可能会确证。限制或反驳所选的模型。最后,我们的 科学政策决策时同样需要可靠的支持。不同的未来发展图景可能会帮助我们决定,我们 的有限的研究预算资源向何处投资,以及如何实现所希望的未来社会状态。 因此,非线性建模和计算机辅助的模拟可能使我们推导出多种未来,但是不可能提 供一种在它们之中作出选择的算法。为了实现所希望的未来社会状态,常规的目标必须 要包括进来。20世纪60年代以来,罗马俱乐部的一系列报告引起了一种国际性争论,涉 及人类的目标和可选择的未来,并有定量的长期预测的支持。在7.1节中,我们看见了 对于非线性世界进行长期定量预测的限制。结果是,政治决策不可能逼出科学思想和技 术创新。但是,它们的发生或不发生却决不是完全随机的事件。我们需要工具来评价所 希望的目标和它们实现的机会。 一种非定量的方法是所谓的德尔斐方法,它通过对专家组的咨询调查来帮助对科学 技术的趋势进行决策和预测。“德尔斐”这个词涉及传说中的占卜家皮蒂娅(图7.1), 据说她为了作出预言而收集有关顾客的信息。今天的德尔斐方法运用了科学专家的估计。 每个专家之间保持隔离,使之判断不受社会压力或群体行为的影响。向每个专家征询, 一定时期的可能的和(或)有希望的发明和科学突破的名称及其权重。有时,向他们征 询的不仅仅是每一种发展的可能性,还要估计出每一种潜在发展的出现将对其他潜在发 展的出现的影响的可能性。因此,人们就获得了一种相关的未来发展之网,这是可以用 主观条件概率的矩阵来表示的。在下一阶段,专家被告知达成共识的项目。当他们被要 求叙述出他们不同意大多数人的意见的理由时,若干个专家就会重新评价他们关于时间 的估计,并排列出缩小了的每一种突破的范围。 当然,德尔斐方法不可能提供唯一的答案。但是,专家意见的分布情况集中了有关 潜在的主要突破的大量信息。对多数人意见的偏离,应该在专家不受到巨大压力的情况 下得到缩小。但是,德尔斐方法因此不可能预见意外之事。有时,德尔斐方法得到了相 关树方法的支持,以从构造的决策构中的多种可能中选择出最好的方法。决策树方法运 用了决策理论的思想,以评估一定未来的希望程度,并选择出有关的科学技术的领域, 其发展对于实现这些目标是必需的。 显然,复杂的非线性世界没有唯一的预测和决策方法。我们需要某种整合的(“杂 交的”)定性和定量方法的网络。最后,我们在运用这些工具和把握我们的未来时,需 要有伦理学路标来指引我们。 7.3复杂性、责任和自由 近年来,伦理学已成为吸引力不断增加的主题,工程师、医生、科学家、管理者和 政治家等各种人物对此都很感兴趣。引起这种兴趣的原因是不断增长着的环境、经济和 现代技术问题、责任问题以及越来越多的警告,还包括对于高度工业化世界的批评的接 受越来越少。但是我们必须意识到,我们的伦理行为标准并非从天上掉到地面来的,也 并非是由某种神秘的巨大权威所诏示的。它们已经发生了变化,并将继续变化下去,因 为它们植根于我们的社会文化世界的进化之中。 在人类社会的建模中,我们决不要忘记,这里面对的,是其中有着意向性活动的人 的高度非线性复杂系统的自参照性。在社会科学中,有一种特殊的测量问题:对社会行 为进行观察和记录的科学家自己也是他们所观察的社会系统中的成员。政治选举中的民 意测验统计的效应,是一个众所周知的例子。再者,社会的理论模型可能具有规范性功 能,会影响其成员的未来行为。一个众所周知的例子是19世纪的社会达尔文主义,它试 图把人类社会的发展解释成一种生物进化的线性延续。实际上,这种社会理论激发起来 一种粗暴的意识形态,它为历史上的社会、经济和种族的胜利者进行的无情选择披上合 法的外衣。今天,有些时髦的是,用自组织的生物模型使基本民主和生态经济的政治思 想合法化。但是,自然既不好也不坏,既不爱好和平也不穷兵黩武。这些都是人类的评 价。经历了多少个百万年之久的生物策略,是以无数群体和物种——由于基因缺陷、癌 症等等——为代价的,因此从人类的观点看,其间充满着其他种种残忍。它们不可能为 我们的政治、经济和社会的发展提供伦理学标准。 在本书中,我们已经看到,历史上的生命、精神和社会模型,往往都是依赖于历史 的自然概念和历史的技术标准的。特别是,线性的机械论因果现,在自然、社会和技术 科学史上曾经是占支配的范式。它还影响了伦理规范和价值,对于它们的理解不能脱离 产生它们的历史时代的认识论概念。认识论和伦理学的历史的相互关联性,并不意味着 任何种类的相对主义和自然主义。对于科学理论和假说,我们必须把它们的历史的、心 理学的发明和发现的内容,与确证和有效性的内容加以区分。甚至人权也有其意义变化 的历史发展。黑格尔曾经主张,人类史可以被理解为“向自由的发展”。因此,在我们 讨论一种复杂的非线性世界中的伦理后果时,我们需要简要回顾一下伦理标准的历史发 展。 伦理学如同逻辑学、认识论、科学哲学、语言哲学、法哲学、宗教哲学等,是一门 哲学学科。历史上,“伦理学”一词可以追溯到古希腊语中的nuo&,它原意是指习惯 和实践。起初,伦理学被理解为关于道德习惯和风俗习惯的学说,目的是教会人们怎样 生活。伦理学的中心问题也就是去发现一个好的道德准则,以忠告人们如何更好地生活, 更正当地行动,以及更合理地决策。古希腊追随苏格拉底的哲学家们已经讨论了其中的 一些基本概念。柏拉图,这位苏格拉底的学生,把苏格拉底对于更好地生活的探索推广 为对于最大的善的普遍理念的追求,这种理念是永恒的、独立的历史生活,隐藏在短暂 的、不断变化的物质世界背后。 亚里士多德批评他老师的永恒价值学,认为它忽视了真实的人类生活。在亚里士多 德看来,善、正义和理性的有效性都涉及政治社会(城邦)、家庭和个人之间的相互作 用。城邦中正义的实现涉及自由人的自然利益的比例或平衡。幸福就是人的最大的善, 它的实现是按照城邦和家庭的自然习惯和实践而成功地生活。显然,亚里士多德的伦理 学概念与他的有机自然观相适应,他的自然中充满着植物、动物和人类的生长和成熟。 在古希腊城邦解体以后,伦理学也就需要一种新标准框架。在伊壁鸠鲁的伦理学中, 强调了个体生活、行动和感情的内在平等,而斯多葛派的伦理学则强调所有人的自然实 现的外在平等。在基督教的中世纪,永恒价值的等级则是由神的世界秩序来保证的。在 近代初期,普遍接受为伦理学基础的神学框架的解体时机就成熟了。 笛卡尔不仅仅主张一种机械的自然模型,他还主张一种以科学理性为基础的道德系 统。巴鲁赫·斯宾诺莎推导出来一个理性主义道德公理体系,与确定论的、机械的自然 模型相呼应。因为人们相信自然规律与理性规律的一致,人的自由也就仅仅意味着按照 理性的确定论规律而行动。最大的善,也就是指理性对于质料性人体的情感的支配作用。 霍布斯捍卫一种机械的自然观和社会观,但是他却怀疑人类的理性。政治规律和习惯都 只能由集权的“绝对君主”来保证。最大的善是和平,即是处于某种极权主义国家的不 动的、最终的平衡。 洛克、休谟和斯密的自由社会,则可以理解为类似于关于可分离的力和相互作用着 的天体的牛顿模型。在美国和法国革命中,个体的自由被当作一种自然权利。但是在一 个确定论因果关系的机械论世界中如何来论证个体的自由呢?甚至自然事件也不过是线 性因果链的结果,原则上不可能从运动的力学方程中推导出来。只有人类才被假定能够 自发地、自由地作出决策,激起因果行动链,而不受外部环境的影响。康德把这种人的 特征称作“自由因果性”。 人们不受任何一个人的意见和愿望的支配,只有可以为所有人接受的忠告才被看作 是合理的。用康德的话来说,只有那些被普遍接受的“准则”才可以被看作是普遍的道 德规律。这个正式的道德普遍性原理,是康德的著名的理性范畴规则:我们的行动应该 遵从这些规则,它们被正当地看作普遍的道德规律。个人的自由受到他(或她)的邻居 的自由所制约。在另一处著名表述中,康德说,人作为一种自由动物不应该被误解为侵 犯别人利益的工具。因此,除了受确定论规律支配的机械论自然界,还有一个具有自由 和道德规律的内部理性世界。康德的自由伦理见解,已经融进了所有现代宪法国家的正 式原则中。 但是,在真实的政治和经济世界中自由规律如何才能实现呢?在工业化的最初阶段, 英裔美国人的功利主义伦理学(源于边沁和穆勒)要求对个人的幸福作出评判。多数人 的幸福被看作是最大的伦理学的善。与康德建议的正式的个体自由原理不同,功利主义 的幸福原理可以被解释为对于它的物质性完善。在美国宪法中,它被明确地解释为自然 人权。功利主义的哲学家和经济学家把对于幸福的要求看作一种收益函数,即以优化的 最小代价来实现多数人的最大福利。这种功利主义原理已经成为福利经济学的伦理学框 架。 现代哲学家例如约翰·罗尔斯就认为,功利主义原理与康德的伦理普遍性要求结合 起来,有助于实现现代福利政治中的公平分配的需要。从方法论的观点看,功利主义的 伦理的、政治的和经济的模型相应于一种自组织的复杂系统,其中具有单个的平衡不动 点,由社会收益函数的优化来实现,与实现多数人的物品的公平分配相联系。 显然,康德的伦理学以及英裔美国人的功利主义都是判断我们的行动的规范要求。 它们可以为个体所接受,也可能不被接受。黑格尔主张,个体的主观的伦理标准是历史 中的客观的历史过程的产物,是由社会的组织体制来实现的。因此,他把社会中个体的 主观道德和主观理性与组织的客观道德和客观理性进行了区分。历史上,黑格尔的以市 民社会的现实的习俗和道德为基础的伦理学,使我们想起亚里士多德的现实的古希腊城 邦的伦理学。但是,亚里士多德的社会秩序是静态的,而黑格尔假定了一种国家及其组 织体制的历史进化。 从方法论的观点看,值得注意的是,黑格尔已经把个体的微观水平与社会及其组织 体制的宏观社会进行了区分,宏观水平不仅仅是其中公民的加和。而且,他把社会的进 化描述为并非由单个个体的意向性和主观理性所决定的,而是由集体理性的自组织过程 所决定的。然而,黑格尔相信的是一种颇为简单的进化模型,其相继的平衡态导致了一 个最终的不动点,这个不动点是由一个公平的市民社会的吸引子所实现的。黑格尔以后 的真实的历史过程表明,他的自组织的、以理性的历史力量推动人类社会到最终公平态 的信念,是一个危险的幻想。众所周知,他的模型由右翼和左翼的极权主义政治家所修 改和滥用。 弗里德里希·尼采抨击了这种客观理性信念以及作为唯心论意识形态的永恒伦理价 值的信念,指出它们与真正的生活力量不相符合。尼采的生命哲学受到达尔文进化生物 学的影响,它在19世纪末已经成为一种流行的哲学。尽管尼采已在他的著述中批判了民 族主义和种族主义,但是他对生命和生存斗争的胜利者的颂扬却在我们这个世纪的政治 中被严重误用了。然而,他另一方面表明了从自然科学中借用的概念影响了政治和伦理 思想。 在我们这个世纪,马丁·海德格尔继续了尼采的虚无主义以及他对现代文明的批判。 在海德格尔看来,人类的技术进化是一种没有任何取向的自动作用,这就忘记了人和人 性的根本基础。如海德格尔这样的哲学家,不可能也不会改变或影响这种进化。他仅仅 有容忍这种强加的命运的自由。但是,海德格尔是以什么方式来反对技术文明而不只是 屈从、听天由命并逃匿到某种没有技术的、历史上从未存在过的田园诗式的乌托邦里去 呢?看来,这是对于自然和社会中的拉普拉斯万能计划和普遍控制能力信念的极端反动。 本书中已经讨论过的复杂系统方式的伦理学后果是什么呢?首先,我们必须意识到, 复杂系统理论不是一种形而上学的过程本体论。它也不是一种传统哲学意义上的认识论 信念。这种方法论的原理,对于自然科学和社会科学中建构非线性复杂系统的模型,提 供了一种启发性的图式。如果这些模型不能够进行数学处理,其性质不能够进行量化, 那么我们得到一种经验模型,这样的模型也许与数据符合,也许不相符合。而且,它力 图在奥卡姆剃刀的意义上最小程度地运用假设。因此,他是一种数学的、经验的、可检 验的和有启发性的经济的方法论。而且,它还是一种跨学科研究纲领,结合了多种自然 科学和社会科学。不过,它并非一种传统哲学意义上的伦理学信念。 然而,我们的自然和社会的复杂性非线性过程的模型,对于我们的行为却具有重要 的影响。一般来说,在一个非线性复杂现实中,线性的思维方式是危险的。我们已经认 识到,传统的自由概念是以线性的行为模型为基础的。在这种框架中,所有事件都是某 种明确定义的起始原因的结果。因此,如果我们采取一种线性的行为模型,那么对一事 件或结果的责任就显得是唯一地决定了。但是,由局部的亿万自私的人们的非线性相互 作用造成了全球性危害的情形又怎样呢?记住,作为一个例子,我们需要的是一个良好 均衡的复杂的生态和经济的系统。由于生态混沌可以是全球性的、不可控制的,一些哲 学家例如汉斯·琼纳斯就主张,我们应该停止一切可能引起某些未知后果的行动。但是, 我们却决不可能预见一个复杂系统的长期发展。难道我们因此应该后退到海德格尔那样 的屈从态度上吗?问题在于,无所事事并不能必然地稳定一个复杂系统,却可能将它推 进到另一种亚稳态。然而,对于复杂系统作出短期的预测则是可能的,例如在经济学中 是可以作出努力来加以改进的。 在一个线性的模型中,人们相信结果的范围类似于它的原因的范围。因此,一个该 受惩罚的行动,法律上的惩罚就是按照受损程度的大小来进行。但是,微小涨落的蝴蝶 效应,最初不过是某个人、某个群体或某个公司引发的,最后却导致了某种全球性的政 治和经济危机,对此又该怎样办呢?例如,考虑管理者和政治家的责任,他们的失误可 能引起数以千计或数以百万计的人们的灾难。 人类的生态的、经济的和政治的问题都已经成为全球性、复杂的和非线性的问题, 传统的个人责任的概念也就让人怀疑。我们需要的是新的集体行为模型,它们依赖于我 们有着种种差别的一个个成员及其见解。个体的决策自由并没有被废弃,但却要受到自 然和社会中复杂系统集体效果的制约,从长期看复杂系统是不可预测和不可控制的。因 此,只有个人的良好愿望是不够的。我们必须考虑它们的非线性效果。全球的动力学相 图提供了在一定环境下的可能图景。它们有助于实现合适的条件,去促进所希望的发展, 并防止有害的发展。 例如,电子化的全球村可能意味着一种对于个人自由的严重威胁。如果在巨大的通 信网络中容易获得公民的信息并对其进行评判,那么就必须老老实实地承认,这有被利 益组织滥用的危险。如同在传统的物品经济学中,可能出现信息的垄断,而不利于其他 的人们、阶级和国家。例如,考虑前面讲到的“第三世界”或“南方”,其信息服务系 统没有那么发达,它们在一个全球性的通信村中就可能得不到公平的机会。 我们的医生和心理学家必须学会把人看作心和身的复杂非线性事物。线性的思维可 能有损于作出成功的诊断。医疗中采取局部的、孤立的和“线性的”疗法,可能会引起 负向的协同效应。因此,值得注意的是,对于复杂的医学和心理学情形进行建模必须要 保持高度敏感性并谨慎从事,以治愈和帮助病人。复杂系统探究方式不可能给我们解释 生命是什么。但是它向我们表明,生命是多么复杂和敏感。因此,它可以帮助我们自觉 意识到我们生命的价值。显然,对于政治学、经济学、生态学、医学以及生物科学、计 算科学和信息科学的伦理学,从复杂系统理论可以得到一些结论。这些伦理学结论强烈 地依赖于我们关于自然和社会中复杂的非线性动力学的知识,但是它们并非是从复杂系 统的原理中推导出来的。因此,我们并不捍卫任何的伦理学自然主义或还原主义。城市 发展、全球生态、人的器官或信息网络的动力学模型,都仅仅是提供了有不同吸引子的 可能图景。问题在于,我们应该评价出,哪个吸引子应是我们在伦理学上所偏爱的,并 通过实现合适的条件而有助它的实现。伊曼努尔·康德在3个著名的问题中概括了这些 哲学问题: 第一个问题涉及认识论,关系到我们的认识的可能性和限度。对于自然和社会的非 线性动力学,复杂系统理论解释了我们能够知道什么和无法知道什么。一般说来,这个 问题要求进行科学研究,以改进我们关于复杂性和进化的知识。 第二个问题涉及伦理学和对我们的行动的评价。一般说来,这个问题要求我们,在 处理自然和社会中高度敏感的复杂系统时保持高度的敏感性。我们既不要冒进也不要后 退,因为冒进以及后退都可能推动系统从一种混沌态变到另一种混沌态。我们既要谨慎 也要积极,遵从进化中的非线性和复杂性条件。在政治上,我们应该意识到,任何一种 单向因果性都可能导致教条主义、狭隘偏执和狂热盲信。 康德的最后一个问题是“我可以希望什么?”这涉及最大的善,传统上宗教哲学中 是作为summum bonum(最大的限度)来讨论的。初看起来,它好像是超出了复杂系统理 论的范围,复杂系统理论只允许我们在长期问题上导出某种总体图景,在特定条件下作 出短期预测。但是,当我们考虑人类的长期的社会文化进化,人们为之奋斗的最大的善 就获得了他们个人生命的尊严。这并不依赖于个体的能力、智能程度或由偶然的出生带 来的社会优越性。它是一种人们在历史的斗争中的自决定的自由行动。在复杂性不断增 加的继续进化中,我们必须尽力保护最大的善。 ------------------ |